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ABSTRACT
The response of a unidirectional composite plate of infirritc lateral dimensions to localized dynamic surface

sourws is investigated through theoretical modeling and laboratory tests. In the theoretical sitnulations,  the material
ofthc plate is assumed to be dissipative and transversely isotropic with its symmetry axis parallel to the fibers. The
source is assumed to hsrve an arbitrary spatial and time dependence. The associated clastodynamic  boundary value
problem is solved by means of an integral transform technique followed by numerical evaluation of the inversion
intc~als. The laboratory tests are carried out on unidirectional graphite epoxy plates of thicknesses ranging from
1-25 mm and large Iateml dimensions (> 30 cm? excited by means of broadband transducers attached to its surface.
The calculated surface response of the plate at different distances and directions from the source is shown to agree
very well with the recorded response in the ultrasonic range.

INTRODUCTION
It is well known that Iaminatcd tibcr reinforced composites often suffer significant internal damage when they

arc subjected to Iocalizcd dynamic surface loads. The damage may involve frbcr breakage and debonding  as well
as delamination bctwccn the individual laminae.  Such damage has been observed to occur even at relatively low
impact speeds resulting in a severe loss in the load carrying capacity of the larninac.  Although the damage is clearly
caused by the stresses which develop within the material, the prccisc nature of these stresses and their relationship
to the degree and mode ofthc damage are not clearly understood at present. This is particularly true in the dynamic
case where the stresses are caused by waves whose propagation characteristics are strongly influenced by the
inherent an isotropy and heterogeneity of the composite material.

Dynamic response of plates has been studied theoretically by many authors through past decades. The linear
elastic solutions of the isotropic or anisotropic plates have been investigated by, c.g, Weaver and Pao (1982),
Vasudevan and Mal (1985); Xu and Mal (1987), I,iu et al. (1991a, b), Mrrl and I,ih (1992, 1995). For low
frequency response quasi-static and thin plate theories have been used (SCC e.g., Chow(1971 ), Moon(l 973); Sun
and l’rm (1984); 1,al (1984)). While nurncrous analytical investigation of wave propagation in plate have been
executed, concurrent experimental studies of such wave processes in the laboratory have been far Icss prevalent.
Most clXort in this direction were devoted to a cmnpwiwn of pred Icted phase and group velocities of surface waves.



lor wrvcfonn analysis, Medick (1960) used a 220 Switl rifle bullet impacting perpendicular to an aluminum plate
to generate flexure  waves Rwerrtly, German et al. (1989) used a lead break on the surface of a plate to generated
wavcy however, there are no available results for comparison between the measured and calculated time history
for wave propagation in a cclmposite under dynamic surface loads.

In this paper a clas.sieal integral transform technique coupled with the matrix method developed by Mal and Lih
(1992) is used for the theoretical simulation of the surface source problem, The integrals involved in the spatial
inverse transform arc evaluated by means of a previously developed adaptive integration scheme. The
mcrr..urcmcnts are earned out by means of an ultrasonic system called the Fracture Wave 1 letcctor by Digital Wave
Corp. Numerical and cxperirncntal  rrmr[ts  for the response of a unidirectional composite Iarninate due to a quasi-
sine pulsed load are compared.

THEORY

Material Modeling
Composite materials arc known to bc strongly an isotropic as well as dissipative. In tibcr-reinforced composites

dissipation is caused by the anisotropy of fiber orientations, and the dissipation of the waves is caused by the
viscxrclastic nature of the resin and by scattering from the fibers and other inhomogencities. Both effects can bc
modeled in the frequency domain by assuming that the stiffness constants, C,j, are eornplcx and frequcncy-
dependcnt, A possible form of Ci, that can model the essential featu res of the dissipation caused by these factors,
has been given in Mal, Bar-Coher~, and Lih (1 992) and will be used here. A brief description of the model is
presented for completeness; the details can be found in the cited paper.

We recall that the linear constitutive equation for a transversely isotropic elastic solid with its symmetry axis
along the xl-axis (Figure 1) can bc expressed in the form
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where Cli = (ct2 - cJ12,  oij is the Cauchy’s stress tensor, w is the displacement vector and c1l, CIV czv C23, CSS are
the five independent real stiffness constants of the material. We introduce five additional constants al, al, al, ad
and as related to Cij and the density of the material, p, through

= c221p,  a2 = c,  / p ,  a 3 =  (c12  + c55)@al
(2)

a4 = (C22  -  c*3y2p  z cddip,  a5 = c55iP

It is WCII known that the quantities da,,  <az, J% J% and Jas  r~present the velocities of five indcPcndent butk
waves that can be transmitted along certain spccitic directions in the transversely isotropic solid.

IA Cll, C,2, C21, C+,,  C55 denote the urmplex and frequency-dependent stiffness constants of the fiber-reinforced
composite and let the complex constants Al,A~, A3, A, be A5 are defmcd through,

,4, = c22/p, A2 = c),/p, ,43 = (c,* + c55yp,

A4 = c44@, A5 =  ~55ip
(3)
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FIGURE 1. THE SURF’ACE  LOAD PROB1.EM  FOR A UNIDIREC1”IONAL  COMPOSITE

Wc assume that the two sets of constants ,4i and a, arc related by the equations

(4)

whcrcp is the damping factor (NM et al,1992). For many isotropic solids,p is independent of frequency in a broad
frequency range. This is generally true if the wavelengths are long compared to the rnicrc,structural  dimensions
(e.g., grain size) of the solid. At higher frequencies the damping, factor incrcascs with frequency duc to wave
scattering. We assume that p is constant below a certain frequency roO, beyond which it becomes frequency
dcpcndcnt and that it can be expressed in the form

where J== u/2z is the frequency in cycles, ~O = ~/2rt, II(f) is the IIeaviside step function, and~ ,Oa ~ J are
constants which determine the degree of decay in the amplitude of the waves with propagation distance.

‘fhc first tcnn in the right hand side of (5) rcpmsents dissipation duc to internal friction and other thermodynamic
effects, while the second term represents the attenuation caused by wave scattering by the fibers and other
inhomogcneitics in the m[ltcnd, rnoreovcr, wave attenuation due to scattering becomes more and more prominent
asJ-yO increases.

The nmtcrial model has been used to calculate the reflected field from graphite/epoxy plates of different
thicknesses immersed in watcl- and the results have been compared with measured data in a pitch-catch type
arrangement in an ultrasonic test bed (Mal et al. (1992)). ‘fhc predicted results have been found to be in
remarkable agreement with the measured data. We now use this model to calculate the elastodynamic field
produced by a conccntratod SUI face load on a graphitefcpoxy  Iami nate.

The Surface Load Problem
The formal solution for a concentrated load problem can be found in (Mal and I,ih (1992)). The general

procedures arc dcscribcd briefly as follows. Consider a unidirectional composite Ian)inatc with thickness II and
with fiber directions parallel to -xl axis, The applied load fly, J /) is assumed to bc acting at the top surface
(Yigurc 1). In abscncc of body folces, the governing equations of the problcm bccomc



‘w = Pu(,,, (6)

The boundary conditions can be expressed as

o,5(xl, X2 , o, f) = - @,> .+> O

0,3(X,,  X2, 11, 2) = o
(7)

where i = 1, 2, 3. In order to solve the problem, wc introduce lourier  time transforms of all time-dependent
variablesJthrough

j(X1, X2 , 6)) = ( fix,,  +> t) ~! ““ dt

(8)

( 9 )

and denote the Fourier time transform of the displacement and stress components u,(x, I), o,Jx, t) by ti~x, w), ~,{x,
~)), Then ~I1(X, w), d,j(x, O) arc sohrt  ions of the system

(lo)

6,3(X1,  X2 , o, 0) = -j.(x,>  Xy ~) (11)

~,@l>  X2> 11, 0) = 0, (i ‘ 1, 2, 3) (12)

wherc~<xl,  X2, O) is the lJourier time transform of~(~,  ~, t), ‘l’he Cauchy’s equations of motion @,quation  10)
must be supplcmcntcd  by the constitutive Equation (1) and the solution must satisfy the outgoing wave (or
radiation) condition at large lateral distances from the load In order to obtain a formal solution of the
boundary-value problem in the frequency domain, we introduce the double spatial Fourier  transforms of rl~x, u),
r$(x, o), and~{xl,  xl, o) through

(13)

(14)

(15)

To solve the problem, a six-dimensional “stress-displacement vector” {S) in the transformed domain is



introduced,

{S(X3)  ) =  {tl,(x3)  X,3(X3S

lhcn {S} can be expressed in a partitioned matrix product form as

where

Klr, :Cz,,R ‘(x3 ) = diag[  e c ~! %’3]

(16)

(17)

(18)

In the above, c,’ are complex constants related to downgoing and upgoirrg,  waves within the laminate, [Q,j] are
3X3 rnatriccs rmd <arc the “vertical” wave nunbcrs of the three possible  waves in the composite with “horizontal”
wave numbers {,, ~~ ‘1’hc  expressions for [Qb] and (i are given in the Mal and 1,ih (1992). Then the six constants
can be determined from the boundary conditions. The solutions fhr the top and bottom displacement can then be
expressed as

m)) = KL] -  Q#Q2M#l[QM  -  Q*FQ,l’QwwDJ (19)

([(II)] : [Q,, - Q, ZEQ2;Q2,][A’][Q2, - Q2JQ;Q21W’  ~)<o)) (20)

where {X(O)} is the stress vector on the top surface of the plate. We assume that load is normal to the surface of
the laminate, and that the applied load can be separated into a time dependent function and spatially distributed
function p(xl, .V2).  Denote the Fourier time transform ofj(t)  byflm), and the spatial double Fourier transform of
P(x,,  X2) by l’(C1, Q. ‘f’hcn {W)) bccon~es

{qO)) = -flco)  (0, o, P($,, (2)1 (21)

(22)

In this paper t wo specific type of are ccmcerned onc is a unit concentrated load (Figure 2(a)), where P(xj, XJ
= 6(xl)b(xJ so that T’({l, Q  = 1. lhc other is a unit load uniformly distributed in a circular region with radius a
(h’igure  2(b)) with,

Ht,>  (2) ‘ J“ ~’n
e ‘<t@sO ‘tlsino) dr ~o

= y~ J,(&J),  (f * o )- ..—

na 2, (( = o)

(23)

where { = i(~l~ + Lzz)  and J, (x) is the BCSSC1  function of the first kind of order 1. A recently developed adaptive
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FIGURE 2. (a) A POINT LOAD (b) A DISTRIBUTED LOA[) IN A CIRCULAR AREA

ntnncrical integration schcrnc (Ma] and I,ih, 1992) has been used to evaluate the wrwcnurnbcr integral and the
resulting spectra arc inverted by fa st l~ourier transfornr  (IJH’).

THE EXPERIMENT
The expcrirncntal setup is shown in Figure 3. The source is a single pulse gcncratcd by a Stanford DS345

function generator and runplificd by a Kitcc A300 lU~ gatcd pulse anrplificx.  Identical broadband transducers
(l Jigital Waves, Mcdcl 131000,5 Ml V.) were used as transnriltcr ancl receiver. A Fracture Wave Detector (Digital
Waves, 1;4000)  with four signal conditioning rnodulcs  was used for data acquisition. I’hc rnodrdcs  arc integrated
with triggers, tnggcr threshold, echo delay controller, tiltcrs,  and AI) converteis which can acquire data in at rsrtcs
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FIGURE 3. THE EXPERIMENTAL SETUP
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FIGURE 4. F4000 FRACTURE WAVE DET[:CTOR  BLOCK DIAGRAM

from 3.715 to 25 MIIZ, The block diagram of the Fracture Wave 1 lctector is shown in Figure 4. As depicted in
Figure 3, the transduc.m  were conncctcd  to wideband preamplifiers then to signal conditioning modules to record
and digitize the signals at a rate of 12.5 MHZ. The data for each signal were transferred tc) a personal computer
for rrnalysis.  “Ihc measurements were made for filed points at 0°,45° and 90° to the fibers,

A [O]lt 12 x 12 crnz unidirectional graphite/epoxy plate was used in the cxperirnc.nt. The material used was
A.%1/3502.  ‘fhc plate was made in UC] Ak Composite Manufacturing Lab, The laminate thickness was 3.175 mm,
with stiffness constants Cll = 155.01, qz  = 6,44, qz == 15.6, q] = 7.89, 95 =- 5,00 (G]’a), and density p =- 1.56
g/cm3. The damping cocflicients were assigned the values with pO ~~ 0.005, and a, = 0.

RESULTS
The calculations and the mcasurcrncnts wele carried out for a variety of spccirncns and sources to station

distances, IIcrc we present results for a caw in which the distance of the field point is much larger then the source
dimensions.
‘fhcresultfor wavcpmpagalioll irlalunlinum plate is first presentd  for comparison, ‘I’hcrnalcria lconstantsfor

allirnil]url] wI; =72.48 GPa, p=2691 GI'a, andticdanlpirlg  conskr(ts used arepO~ 0.005, a0 ‘O. lhcsourcc
function is plotlcd  in Figure 5. It shou]d  be noted that the source function generated from the function generator
is originally a 2MI KI Iz single sine pulse; however, through gating and amplifying together with the transformation
through transducers, the original source function is altered

Figure 6 shows the comparison between measured and calculated time histories of normal displacement Uj on
a3.175mmt  hickahrminumpl  atcat 50mmfromthesourcc.  ltcanbc secnthat  there iscxccllenta greebctwecn
thccalculated  andthcrncasured  wavcforrns. Fi~;ure 7showsthe  cort~pafison  bctwecn n)casured and calculated
time histories of the normal displacement UJ at 30 mm from source on a 3,175 mm thick graphite/epoxy laminate
\titi~~lahnal wr~Smts nlentiorlcd above forwave  propagation  along ttle fiber. Although theagrccment  is not as
excellent asthatwith  ahrrninum, itisvcry good,. Figurc8is  thesarnc  case as Figure 7forpropagation  450tothc
fiber, although thcreis  sotl~cdiNerencc forthefirst  arrivals, themain  pulses arcingc~od agreement, F’igure9is
thesamcas  Figurc7for  wave propagation 90°tothefibcr.  Theresult  again shows good agrccmeotb  etweenthc
measured andcalculatcd  results. Notcthat  thedifferences  atthcend  (}fthctime histc}V iscattsed  byrcflcctions
from the boundaries of the plate.
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CONCLUDING REMARKS
An investigation comprised of theoretical analysis and experit nents was performed to study the response of

composite laminates to dynamic surface loads. It shows good agreement of the main pulses between the measured
data and the calculated results; however the agreement between calculated and measured time history is excellent
for the isotropic plate, but it is reduced somewhat for the composite laminate. lmprovcrnents in the model and
experiment are nccdcd to obtain better results. The quantitative features of a wave propagating in a composite
laminate arc better understood. ‘Ihc understanding developed in this work will bc uscfrrl  for the prediction of the
damage produced in composite Ianlinates subjected to low speed ilnpacts and for the ultrasonic NDE of structural
composite components.
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